Smooth Backfitting in Generalized Additive Models
نویسندگان
چکیده
Generalized additive models have been popular among statisticians and data analysts in multivariate nonparametric regression with non-Gaussian responses including binary and count data. In this paper, a new likelihood approach for fitting generalized additive models is proposed. It aims to maximize a smoothed likelihood. The additive functions are estimated by solving a system of nonlinear integral equations. An iterative algorithm based on smooth backfitting is developed from the Newton–Kantorovich theorem. Asymptotic properties of the estimator and convergence of the algorithm are discussed. It is shown that our proposal based on local linear fit achieves the same bias and variance as the oracle estimator that uses knowledge of the other components. Numerical comparison with the recently proposed two-stage estimator [Ann. Statist. 32 (2004) 2412–2443] is also made.
منابع مشابه
A Simple Smooth Backfitting Method for Additive Models
In this paper a new smooth backfitting estimate is proposed for additive regression models. The estimate has the simple structure of Nadaraya–Watson smooth backfitting but at the same time achieves the oracle property of local linear smooth backfitting. Each component is estimated with the same asymptotic accuracy as if the other components were known. 1. Introduction. In additive models it is ...
متن کاملBandwidth Selection for Smooth Backfitting in Additive Models
The smooth backfitting introduced byMammen, Linton and Nielsen [Ann. Statist. 27 (1999) 1443–1490] is a promising technique to fit additive regression models and is known to achieve the oracle efficiency bound. In this paper, we propose and discuss three fully automated bandwidth selection methods for smooth backfitting in additive models. The first one is a penalized least squares approach whi...
متن کاملSmooth Backfitting for Additive Modeling with Small Errors-in-Variables, with an Application to Additive Functional Regression for Multiple Predictor Functions
We study smooth backfitting when there are errors-in-variables, which is motivated by functional additive models for a functional regression model with a scalar response and multiple functional predictors that are additive in the functional principal components of the predictor processes. The development of a new smooth backfitting technique for the estimation of the additive component function...
متن کاملNonparametric Lag Selection for Additive Models Based on the Smooth Backfitting Estimator
This paper proposes a nonparametric FPE-like procedure based on the smooth backfitting estimator when the additive structure is a priori known. This procedure can be expected to perform well because of its well-known finite sample performance of the smooth backfitting estimator. Consistency of our procedure is established under very general conditions, including heteroskedasticity.
متن کاملNonparametric Inferences for Additive Models
Additive models with backfitting algorithms are popular multivariate nonparametric fitting techniques. However, the inferences of the models have not been very well developed, due partially to the complexity of the backfitting estimators. There are few tools available to answer some important and frequently asked questions, such as whether a specific additive component is significant or admits ...
متن کامل